Representation Theory for Varieties of Comtrans Algebras and Lie Triple Systems

نویسندگان

  • Bokhee Im
  • Jonathan D. H. Smith
چکیده

Comtrans algebras are unital modules over a commutative ring R, equipped with two basic trilinear operations: a commutator [x, y, z] satisfying the left alternative identity [x, x, y] = 0, (1.1) and a translator 〈x, y, z〉 satisfying the Jacobi identity 〈x, y, z〉+ 〈y, z, x〉+ 〈z, x, y〉 = 0, (1.2) such that together the commutator and translator satisfy the comtrans identity [x, y, x] = 〈x, y, x〉. (1.3)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Double derivations of n-Lie algebras

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎wit...

متن کامل

Superpotentials for Superconformal Chern–simons Theories from Representation Theory

These notes provide a detailed account of the universal structure of superpotentials defining a large class of superconformal Chern–Simons theories with matter, many of which appear as the low-energy descriptions of multiple M2-brane configurations. The amount of superconformal symmetry in the Chern–Simons-matter theory determines the minimum amount of global symmetry that the associated quarti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011